
VISUALPIC: A NEW DATA VISUALIZER AND POST-PROCESSOR FOR
PARTICLE-IN-CELL CODES∗

A. Ferran Pousa†,1, R. Assmann, A. Martinez de la Ossa1, DESY, 22607 Hamburg, Germany
1 also at Universität Hamburg, 22761 Hamburg, Germany

Abstract
Numerical simulations are heavily relied on for evaluating

optimal working points with plasma accelerators and for pre-
dicting their performance. These simulations produce high
volumes of complex data, which is often analyzed by scien-
tists with individually prepared software and analysis tools.
As a consequence, there is a lack of a commonly available,
quick, complete and easy-to-use data visualizer for Particle-
In-Cell simulation codes. VisualPIC is a new application
created with the aim of filling that void, providing a graphi-
cal user interface with advanced tools for 2D and 3D data
visualization, post-processing and particle tracking. The
program is developed under the principles of open source
and with a modular design, an approach and architecture
which allow interested scientists to contribute by adding new
features or compatibility for additional simulation codes.

INTRODUCTION
VisualPIC is a new software for data visualization and

analysis specifically designed to work with Particle-In-Cell
(PIC) [1] simulation codes, mainly for its application in
plasma wakefield acceleration [2].

Figure 1: VisualPIC logo.

The original aim of VisualPIC was to provide a flexible
and easy-to-use interface for data analysis, allowing the user
to visualize the simulation results without having to write
any code. This reduces the need of custom made scripts
which, even if very efficient for specific cases, can easily
tend to become quite cluttered and unpractical when used
as the only tool for data visualization.
The program has been developed as an open-source

project and it’s written in Python [3] due to the maturity
of the available plotting libraries like matplotlib [4] and
its cross-platform and open nature. Furthermore, using an
object-oriented programming language means that the code
can be designed in a modular way, in which different classes
perform very specific and well defined tasks. For exam-
ple, the data-reading process has been isolated into 3 main
∗ This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No.
653782.
† angel.ferran.pousa@desy.de

classes, making the rest of the program virtually indepen-
dent of the simulation code used to produce the data files.
This implies that scientists interested in taking advantage of
the features in VisualPIC only have to implement the data
readers for their PIC code of choice.
The main capabilities of the program include 2D and

3D visualization of fields and particle data, particle track-
ing through the simulation, the creation of snapshots and
animations, as well as a dedicated visualizer for making
eye-catching 3D renders of the simulation.
The program is still on an Alpha development stage and

only data readers for the PIC code OSIRIS [5] are imple-
mented, but more are planned for the future.

DEPENDENCIES AND USED LIBRARIES
At the time of writing, the program is designed to run in

Python 3.5, using Qt 5.7 [6] for the Graphical User Interface
(GUI). The main Python libraries needed to run VisualPIC
include:

• NumPy 1.12 with MKL [7].

• SciPy 0.18 [8].

• Matplotlib 2.0.

• PyQt5 [9].

• H5py 2.6 [10].

• VTK 7.0 [11].

• Pillow [12].

Also, the software FFmpeg [13] is used to create the ani-
mations and needs to be installed and added to the system
PATH.

These libraries and software packages are available for all
3 main operating systems, effectively making VisualPIC a
cross-platform application.

DATA READING AND VISUALIZATION
All the user has to do in order to analyze a simulation is to

specify the path of the root folder containing the data. Once
this is done, the program will automatically scan the folder
and populate the GUI with the available data sets.

After that, the user can select what to visualize and easily
jump between time steps with a slider placed at the bottom
of the window, as seen in Fig. 2.
The individual plots can be edited to change the data

units, axes labels, colormaps, etc. and saved in a number of
different formats, including PNG and PDF. Also, animations
of the data can be easily made with a dedicated tool.



Figure 2: Main VisualPIC interface for data visualization.

PARTICLE TRACKING
PIC codes can typically allow particle tracking by assign-

ing individual labels or tags to the macroparticles in the
simulation. This can be useful for studying beam dynamics,
laser-plasma interactions, self-injection of electrons, or other
processes that might require a detailed study.

In order to take advantage of this feature, VisualPIC auto-
matically detects whether the particle data from a simulation
includes tags and offers a specific interface for particle track-
ing, as seen in Fig. 3.

Figure 3: Particle tracking window in VisualPIC. The plot
on the top right shows the particle distribution of an electron
beam at a certain time step. Particles to track can be selected
manually with the rectangle tool on the plot or by specifying
the search criteria on the left.

The window for particle tracking allows the user to visu-
alize the state of the species at any time step and offers two
different ways of selecting the particles to track:

• Graphic selection: the user can visualize in a 2D scatter
plot the state of the species at any time step and in any
of the available variables, like position, momentum or
energy. Then, by simply drawing a rectangle over the
area of interest, a list of the particles contained in there
will be populated, allowing their individual selection.

• Precise search: the user can manually specify a range
in any of the available quantities and find the parti-

cles within the given values. From the obtained list,
individual particles can be selected for tracking.

After the selection has been made, the code will go
through all the time steps in the simulation and retrieve
the information of the tracked particles. This data can then
be plotted within the program and exported in HDF5 for-
mat [14].

3D VISUALIZATION
VisualPIC also contains a specific module for 3D visu-

alization whose purpose is to create visually appealing 3D
renders of the simulation.
One of the features of this module is that the data does

not need to be in 3D, instead, the program can also accept
data from 2D simulations and efficiently reconstruct a 3D
field by assuming cylindrical symmetry.
The 3D renders are made with the VTK library, allow-

ing interactive visualization as well as modifying the visual
properties of the fields in real time.

Figure 4: 3D render made from a 2D simulation of a laser-
driven plasma accelerating stage. The laser is traveling to the
left and is displayed in bright yellow-red. The background
plasma can be seen in blue.

SOURCE CODE
VisualPIC is an open-source project and is freely

available under the GNU General Public License v3.0. The
source code and documentation can be found both on the
DESY Stash repository and on GitHub:

https://stash.desy.de/users/ferran/repos/
visualpic

https://github.com/AngelFP/VisualPIC

If you use VisualPIC to produce plots or figures for any
scientific work, please provide a reference to this publication.

SUMMARY
VisualPIC is a convenient tool for performing the most

common tasks when analyzing data from PIC simulations,
as well as producing 3D figures and animations.

The GUI allows users to easily visualize and interact with
the data without needing to do any scripting, making the
process very quick and agile.



At the time of writing, only OSIRIS data is supported, but
thanks to the modular design and open-source nature of Visu-
alPIC, any interested scientists can easily add compatibility
for additional PIC codes.

REFERENCES
[1] D. Tskhakaya, K. Matyash, R. Schneider and F. Taccogna,

"The Particle-In-Cell Method", Contributions to Plasma
Physics, vol. 47, no. 8-9, pp. 563–594, 2007.

[2] T. Tajima and J. M. Dawson, "Laser electron accelerator",
Phys. Rev. Lett., vol. 43, no. 4, p. 267, Jul. 1979.

[3] Python Software Foundation. Python Language Reference,
version 3.5, https://www.python.org.

[4] J. D. Hunter, "Matplotlib: A 2D graphics environment", Com-
puting In Science & Engineering, vol. 9, no. 3, pp. 90–95,
2007.

[5] R. Fonseca et al., "OSIRIS: a three-dimensional, fully rela-
tivistic particle in cell code for modeling plasma based accel-
erators", in Proc. ICCS 2002, Amsterdam, The Netherlands,
Apr. 2002, pp. 342-351.

[6] Qt: Cross-platform software development for embedded &
desktop, https://www.qt.io.

[7] S. van derWalt, S. C. Colbert and G. Varoquaux, "The NumPy
array: a structure for efficient numerical computation", Com-
puting in Science & Engineering, vol. 13, pp. 22–30, 2011.

[8] E, Jones et. al, "SciPy: Open source scientific tools for
Python", http://www.scipy.org/.

[9] PyQt: Python bindings for The Qt Company’s appli-
cation framework, https://www.riverbankcomputing.
com/software/pyqt/intro.

[10] A. Collette, Python and HDF5, O’Reilly, 2013.
[11] W. Schroeder et al., The Visualization Toolkit (4th ed.), Kit-

ware, 2006.
[12] Pillow: The friendly PIL fork, https://python-pillow.

org/.
[13] FFmpeg: Cross-platform solution to record, convert and

stream audio and video, https://ffmpeg.org/.
[14] The HDF Group. "Hierarchical data format version 5", 2000-

2017, http://www.hdfgroup.org/HDF5.


